ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
K. Noborio, Y. Yamamoto, S. Konishi
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1105-1109
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1645
Articles are hosted by Taylor and Francis Online.
The neutron production rate (NPR) through fusion reaction on the surface of electrode(s) of an IECF (Inertial Electrostatic Confinement Fusion) device, which is expected to increase at low pressure, has been evaluated with a one dimensional simulation code and an experimental device. In the simulation, the NPR on the cathode and the anode has been evaluated individually as a function of pressure. The simulation results reveal that the NPR on the cathode increases at low pressure and that on the anodes increases at high pressure. In the experiment, titanium coated electrodes have been used in order to rise the adsorbed amount, and the results show same tendency along with the pressure as calculation results. And the maximum value increases 3 times by coating titanium.