ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
K. Noborio, Y. Yamamoto, S. Konishi
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1105-1109
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1645
Articles are hosted by Taylor and Francis Online.
The neutron production rate (NPR) through fusion reaction on the surface of electrode(s) of an IECF (Inertial Electrostatic Confinement Fusion) device, which is expected to increase at low pressure, has been evaluated with a one dimensional simulation code and an experimental device. In the simulation, the NPR on the cathode and the anode has been evaluated individually as a function of pressure. The simulation results reveal that the NPR on the cathode increases at low pressure and that on the anodes increases at high pressure. In the experiment, titanium coated electrodes have been used in order to rise the adsorbed amount, and the results show same tendency along with the pressure as calculation results. And the maximum value increases 3 times by coating titanium.