ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
H. Huang, H. W. Xu, K. P. Youngblood, D. R. Wall, R. B. Stephens, K. A. Moreno, A. Nikroo, K. J. Wu, M. Wang, A. V. Hamza
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 190-201
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-24
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility point design uses a five-layer capsule to modify the X-ray absorption in order to achieve optimized shock timing. A stepwise copper dopant design defines the layer structure; however, the as-deposited Cu distribution is significantly altered during the CH mandrel removal by pyrolysis. The changes are significant: (a) Cu diffuses on average several microns, a distance more than an order of magnitude larger than predicted from the bulk diffusion data, and (b) the Cu distribution, as a result of diffusion, is highly heterogeneous, introducing a local variation of [approximately]0.06 at. % near the original layer interface. In this study, we developed quantitative techniques to measure Cu diffusion and explored its correlation to beryllium microstructures. Plausible diffusion mechanisms and mitigation methods will be discussed. These findings will enable more accurate evaluation of the expected target performance.