ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
C. J. Martin, L. A. El-Guebaly
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 985-989
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1622
Articles are hosted by Taylor and Francis Online.
Loss of Coolant Accident (LOCA) and Loss of Flow Accident (LOFA) thermal simulations have been performed for the ARIES compact stellarator fusion power plant. The ARIES-CS design uses three separate coolant loops: lithium-lead (LiPb) in the blanket, helium in the blanket and the shield, and water in the vacuum vessel. The thermal response to LOCA/LOFA conditions was simulated using transient axisymmetric finite element models. In these analyses, the plasma was quenched three seconds after coolant loss, and the temperature of the chamber components subsequently increased due to the generated decay heat. Thermal simulations determined the maximum temperatures reached in the various components were below the 740°C temperature limit for the reusability of the ferritic steel structure.