ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
L. Schmitz, Y. Tajima, A. Ying, P. Calderoni
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 963-968
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1619
Articles are hosted by Taylor and Francis Online.
The Z-pinch driven fusion reactor will require extremely high current pulses to generate sufficient x-ray flux for the fusion target implosion. The fusion target is coupled to the pulsed power system through a recyclable transmission line (RTL) that is presently envisioned made of carbon steel. The energy released by the fusion pulse is absorbed by liquid flibe (Li2BeF4) coolant and by the RTL material which is partially vaporized and ionized. The objective of this paper is to characterize the recombination of vaporized metal halides in the presence of ferritic steel in a plasma with parameters similar to those expected in the Z-IFE chamber (plasma density < 2 × 1018 cm-3, Te < 40000 K). Using a substitute eutectic salt (Na2MgCl4) instead of flibe, we find experimentally that the three-body recombination rate of iron with chlorine is larger than that of sodium with chlorine. The measured recombination rates are compared to equilibrium recombination rates calculated at lower temperature (5000 K). The results suggest that an effective scheme for the removal of ferritic fluorite from the liquid flibe coolant may be needed in a Z-IFE reactor in addition to the mechanical separation of carbon steel RTL material required for recycling.