ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. E. Sawan, M. W. McGeoch, A. Ibrahim, P. Wilson
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 938-942
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1614
Articles are hosted by Taylor and Francis Online.
In the HAPL program,power plant designs are assessed with targets driven by 40 KrF laser beams. The final optics system that focuses the laser onto the target may include a grazing incidence metallic mirror (GIMM) located at 24 m from the target with 85 ° angle of incidence. The GIMM is in direct line of sight of the target and has a 50 micron thick aluminum coating. Two options were considered for the substrate material; SiC and AlBeMet. The impact of the GIMM design options on the nuclear environment at the dielectric focusing and turning mirrors was assessed. Using AlBeMet results in about a factor of two higher neutron flux. We considered beam duct configuration modifications such as utilizing neutron traps to reduce radiation streaming. In addition, we investigated the impact of lining the beam ducts and neutron traps with different materials that help slowing down and absorbing neutrons.