ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
M. E. Sawan, M. W. McGeoch, A. Ibrahim, P. Wilson
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 938-942
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1614
Articles are hosted by Taylor and Francis Online.
In the HAPL program,power plant designs are assessed with targets driven by 40 KrF laser beams. The final optics system that focuses the laser onto the target may include a grazing incidence metallic mirror (GIMM) located at 24 m from the target with 85 ° angle of incidence. The GIMM is in direct line of sight of the target and has a 50 micron thick aluminum coating. Two options were considered for the substrate material; SiC and AlBeMet. The impact of the GIMM design options on the nuclear environment at the dielectric focusing and turning mirrors was assessed. Using AlBeMet results in about a factor of two higher neutron flux. We considered beam duct configuration modifications such as utilizing neutron traps to reduce radiation streaming. In addition, we investigated the impact of lining the beam ducts and neutron traps with different materials that help slowing down and absorbing neutrons.