ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Philippe M. Bardet, Ryan P. Abbott, Chris Campen, James Franklin, Haihua Zhao, Per F. Peterson
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 932-937
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1613
Articles are hosted by Taylor and Francis Online.
Z-Pinch IFE chamber fluid mechanics can be studied using simulant fluids such as water in reduced scale facilities. The use of porous liquid and solid blanket materials provides the key to mitigating blast effects from fusion reaction. The UCB Vacuum Hydraulics Experiment (VHEX) was recently upgraded with a large, annular inlet nozzle system to produce an annular porous liquid curtains to study Z-Pinch IFE chamber response. Explosives experiments in VHEX studied the response of the liquid structure to the detonation of high explosive C-4. The experiments demonstrated that the crushing of porous liquid structures is effective in transferring momentum uniformly into the blanket mass. No significant high-speed jetting or spall was observed exiting the shocked liquid structure. Independent measurement of the transient pressure history, coupled with high-speed video of the blanket response and final velocity, will provide the basis to validate gas dynamics and blanket response models.