ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. A. Heltemes, G. A. Moses
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 927-931
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1612
Articles are hosted by Taylor and Francis Online.
The introduction of magnetic cusp fields into the High Average Power Laser (HAPL) reactor design is to prevent target ions from interacting with the armor layer. Diverting the ions and preventing their impact on the chamber armor eases thermal design constraints considerably. The BUCKY code was used to simulate thermal loads for the candidate armor materials tungsten and silicon carbide.Parametric analysis was done to ascertain the peak temperature rise in the armor due to X-rays from the HAPL target thermonuclear ignition. Temperature values as a function of chamber armor radius were obtained using initial conditions of T0 = 600 °C and xenon buffer gas pressures of 66.7, 666.7 and 6666.1 mPa (0.5, 5 and 50 mTorr). The armor radius was decreased until thermal thresholds were met (2400 °C and 1000 °C for tungsten and silicon carbide, respectively) to determine the minimum allowable radius of the HAPL chamber.A second set of parametric simulations were performed at xenon gas initial pressures of 666.7 and 6666.1 mPa (5 and 50 mTorr) and temperature of 600°C to a time of 5 ms to observe the effect of re-radiation from the buffer gas on the surface temperature of tungsten and silicon carbide.