ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
M. Z. Youssef, P. Batistoni, L. Patrizzi, T. Wareing, I. M. Davis
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 801-806
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1589
Articles are hosted by Taylor and Francis Online.
The calculation accuracy of the newly developed 3D discrete ordinates code, Attila, is benchmarked by comparing its prediction to the measured data in two mockups bombarded by 14 MeV neutron source of the FNG facility located at Frascati, Italy. The results are also compared to those based on MCNP Monte Carlo code for the same measured reactions. The experimental mock-ups simulate parts of ITER in-vessel components, namely, the tungsten (W) mockup and the ITER shielding blanket. The first mockup was used to validate W data as a material for plasma facing component. A streaming path was introduced in the second configuration. The objective of this paper is to benchmark Attila code to determine its adequacy for fusion application. Another objective is to compare results based on two distinctive 3D calculation tools using the same nuclear data, FENDL2.1, and the same response function (IRDF-90) for measured data. The results of these comparisons are reported in this paper.