ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. A. Heltemes, G. A. Moses
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 796-800
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1588
Articles are hosted by Taylor and Francis Online.
The BUCKY 1-D simulation code was used to simulate the hydrodynamic compression and thermonuclear ignition of a DT filled capsule that mimics the specifications set forth by the Fusion Test Facility (FTF) working group. This paper focuses on two key aspects of the ongoing hydrodynamics simulation work being performed at the University of Wisconsin.The first set of simulations was performed to obtain a baseline result for comparison. This baseline utilized the High Average Power Laser (HAPL) target ion and X-ray threat spectra scaled down from 365 MJ to 29.75 MJ. The second set of simulations was a target simulation initiated from conditions that were expected to be found at the point of ignition of the FTF DT target.The results of these simulations allowed for the creation of time-dependent X-ray and ion threat spectra, which will be used in future chamber simulations in support of the FTF design effort to assess the thermal response of test modules located within the facility.