ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yuto Takeuchi, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 756-760
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1581
Articles are hosted by Taylor and Francis Online.
The paper proposes a conceptual design of hydrogen production system with unused biomass wastes and steam generated from high temperature nuclear power systems including fusion reactor. A reaction of interest is expressed as a formula, (C6H10O5)n + nH2O => 6nH2 + 6nCO, which is accompanied by a large quantity of endothermic reaction. Basic experiments have been made of thermal decomposition of cellulose, specimen as biomass resource, with the aid of high temperature steam of 1000 deg C heated by an infrared image furnace. The endothermic quantity was evaluated from a numerical model in which measured temperatures are employed. The numerical results for endothermic quantity agreed well with the theoretical value of 816 kJ/mol. To discuss the technical feasibility of the present process, the conceptual design of a hydrogen production reactor system of heat exchanger type was made with the numerical results and heat transfer correlations for helium and steam flow. The present biomass based process, producing both electricity and more hydrogen than other processes such as water or steam electrolysis using an equivalent quantity of heat source, is characterized as an efficient hydrogen production method using nuclear thermal energy, which simultaneously contributes to reduce biomass wastes.