ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
J. M. Lopez, J. Vega, S. Dormido-Canto, A. Murari, J. M. Ramirez, M. Ruiz, G. De Arcas, JET-EFDA Contributors
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 26-33
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-490
Articles are hosted by Taylor and Francis Online.
Disruptions in tokamak devices are inevitable and can severely damage a tokamak device's wall. For this reason, different protection mechanisms have to be implemented. In the Joint European Torus (JET), these protection systems are structured in different levels. At the lowest level are those systems that are responsible for protecting the machine's integrity, which must be highly reliable. More complex systems are located at higher levels; these higher-level systems have been designed to take action before low-level systems. Since the installation of the new metallic wall in JET, new protection systems have been being developed to improve the overall protection of the device. This work focuses on a software application - a disruption predictor - that detects an incoming disruption. This software application simulates the behavior of a real-time implementation.In recent years, efforts have been devoted to developing and optimizing a reliable system that is capable of predicting disruptions. This has been accomplished by the novel combination of machine-learning techniques based on supervised learning methods. Disruptions must be predicted early enough so that the protection systems can mitigate the effects of disruptions. This paper summarizes the software development of the JET disruption predictor. This software simulates the real-time data acquisition and data processing. It has been an essential software tool to both optimize the disruption prediction model and implement a simulator of the real-time predictor.