ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
J. M. Lopez, J. Vega, S. Dormido-Canto, A. Murari, J. M. Ramirez, M. Ruiz, G. De Arcas, JET-EFDA Contributors
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 26-33
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-490
Articles are hosted by Taylor and Francis Online.
Disruptions in tokamak devices are inevitable and can severely damage a tokamak device's wall. For this reason, different protection mechanisms have to be implemented. In the Joint European Torus (JET), these protection systems are structured in different levels. At the lowest level are those systems that are responsible for protecting the machine's integrity, which must be highly reliable. More complex systems are located at higher levels; these higher-level systems have been designed to take action before low-level systems. Since the installation of the new metallic wall in JET, new protection systems have been being developed to improve the overall protection of the device. This work focuses on a software application - a disruption predictor - that detects an incoming disruption. This software application simulates the behavior of a real-time implementation.In recent years, efforts have been devoted to developing and optimizing a reliable system that is capable of predicting disruptions. This has been accomplished by the novel combination of machine-learning techniques based on supervised learning methods. Disruptions must be predicted early enough so that the protection systems can mitigate the effects of disruptions. This paper summarizes the software development of the JET disruption predictor. This software simulates the real-time data acquisition and data processing. It has been an essential software tool to both optimize the disruption prediction model and implement a simulator of the real-time predictor.