ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. Hayashi, T. Suzuki, W. M. Shu, T. Yamanishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 706-710
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1573
Articles are hosted by Taylor and Francis Online.
In order to establish a proper control method of the DT fuel isotope balance in ITER, isotopic composition of hydrogen, which was released rapidly from the metal hydride bed by vacuum pump, was investigated using a ZrCo bed (1/10 scale of ITER fuel storage & delivery system) as functions of initially stored H/D ratio and temperature. The equilibrium pressure (P) of hydrogen - metal system has large isotope effect such as PH2 < PD2 < PT2 for ZrCo, however, the difference of H,D isotope fractions was within about 5%, during rapid delivery of about 90% hydrogen gases at 623 K and initial H:D of 1:1. In cases of initial H:D of 9:1 or 1:9, the differences of H,D isotope fractions were rather small of a few %. Even if the fluctuation of the isotope ratio is less than 5%, depending on the requirements from plasma physics experiments and fuel accountancy of tritium plant, batch fuel delivery from adequate gas tanks after isotope composition adjustment will be preferable to direct rapid delivery from storage bed.