ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. Itoh, T. Hayashi, K. Isobe, K. Kobayashi, T. Yamanishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 701-705
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1572
Articles are hosted by Taylor and Francis Online.
In order to handle high-level tritiated water (HTO) safely, the self-decomposition behavior has been investigated as functions of tritium concentration (from 16 GBq/cm3 to 2 TBq/cm3) and storage temperature (269K ~ 303K). The representative decomposition products such as H2 in the gas phase and H2O2 in the liquid phase were measured periodically, storing HTO in a leak-tight vessel. The effective production rate of H2 increased with tritium concentration, however, the normalized production rate by tritium decay, like effective G-value, decreased with tritium concentration. The effective production rate of H2O2 also increased with tritium concentration and the normalized one also decreased under consideration of its natural decomposition rate, though it thought that the almost H2O2 calculated by the reported G-value decomposed by extra stimulus in tritiated water. The effective production rates of H2 and H2O2 increased with temperature.