ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Gerald Kamelander, Xavier Litaudon, Didier Moreau, Irina Voitsekhovitch
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 119-126
Technical Paper | doi.org/10.13182/FST01-A157
Articles are hosted by Taylor and Francis Online.
The results are presented of investigations on advanced scenarios for plasmas of next-generation tokamaks by means of a 1 1/2-dimensional transport code. The role of thermonuclear alpha particles and helium ash is analyzed by a two-group model and by introducing experimentally validated mixed Bohm/gyroBohm models on the assumption that the diffusion of helium ash can be treated like the diffusion of bulk plasma ions. Recycling of helium ash is modeled by introducing a wall source. Results are presented of parameter studies presenting the equilibrium helium fraction as a function of the recycling factor. It is shown that for a given scenario, the fraction of effective helium confinement time and energy confinement time is a time-dependent quantity and not a constant, as was assumed in earlier research.