ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Gerald Kamelander, Xavier Litaudon, Didier Moreau, Irina Voitsekhovitch
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 119-126
Technical Paper | doi.org/10.13182/FST01-A157
Articles are hosted by Taylor and Francis Online.
The results are presented of investigations on advanced scenarios for plasmas of next-generation tokamaks by means of a 1 1/2-dimensional transport code. The role of thermonuclear alpha particles and helium ash is analyzed by a two-group model and by introducing experimentally validated mixed Bohm/gyroBohm models on the assumption that the diffusion of helium ash can be treated like the diffusion of bulk plasma ions. Recycling of helium ash is modeled by introducing a wall source. Results are presented of parameter studies presenting the equilibrium helium fraction as a function of the recycling factor. It is shown that for a given scenario, the fraction of effective helium confinement time and energy confinement time is a time-dependent quantity and not a constant, as was assumed in earlier research.