ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. Muroga, T. Tanaka, Zaixin Li, A. Sagara, Dai-Kai Sze
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 682-686
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1568
Articles are hosted by Taylor and Francis Online.
One of the critical issues of Flibe/V-alloy blanket with REDOX control by Be is a large tritium inventory in V-alloy structures. Among the possible solutions to this issue would be to control REDOX not by Be but by addition of MoF6 or WF6 enhancing the reaction from T2 to TF. The present study investigated feasibility of this procedure by thermodynamic and neutronics calculations. Using the blanket dimensions of Force Free Helical Reactor (FFHR), tritium inventory in V-alloy structure and Flibe were estimated based on the calculated equilibrium partial pressures of T2 and TF in various cases of REDOX control by MoF6 or WF6. Also carried out were neutronics examinations for the impact of Mo or W doping in the blanket. The results showed that the tritium inventory in the blanket area would be less than 100g at the TF level of 0.1 and 1 ppm in Flibe with addition of WF6 and MoF6, respectively. WF6 doping is far more advantageous than MoF6 doping for low activation purposes.