ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
S. Fukada, K. Katayama, T. Terai, A. Sagara
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 677-681
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1567
Articles are hosted by Taylor and Francis Online.
The present paper is to describe the behavior of tritium in Flibe as a self-cooled liquid blanket of a fusion reactor quantitatively. In order to avoid the generation of corrosive TF, Flibe is maintained under reduction atmosphere to transform TF to T2 to keep a faster reaction rate compared with a residence time in a self-cooled blanket. The most important point is to clarify whether or not the redox control of Flibe can be achieved by Be rods inserted in a blanket within a limited contact time. The dissolution rate of a Be rod and the TF reduction reaction rate of Be + 2TF = BeF2 + T2 in Flibe were experimentally determined under the JUPITER-II collaboration work. Close agreement was obtained between experiment and our simplified complete-mixing model. Especially, the reaction between Be and F- ion immediately after the contact was found to be limited by diffusion of F- ion. The behavior of tritium generated in a Flibe fuel cycle was simulated under a Flibe flow condition of FFHR-2.