ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
S. Fukada, K. Katayama, T. Terai, A. Sagara
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 677-681
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1567
Articles are hosted by Taylor and Francis Online.
The present paper is to describe the behavior of tritium in Flibe as a self-cooled liquid blanket of a fusion reactor quantitatively. In order to avoid the generation of corrosive TF, Flibe is maintained under reduction atmosphere to transform TF to T2 to keep a faster reaction rate compared with a residence time in a self-cooled blanket. The most important point is to clarify whether or not the redox control of Flibe can be achieved by Be rods inserted in a blanket within a limited contact time. The dissolution rate of a Be rod and the TF reduction reaction rate of Be + 2TF = BeF2 + T2 in Flibe were experimentally determined under the JUPITER-II collaboration work. Close agreement was obtained between experiment and our simplified complete-mixing model. Especially, the reaction between Be and F- ion immediately after the contact was found to be limited by diffusion of F- ion. The behavior of tritium generated in a Flibe fuel cycle was simulated under a Flibe flow condition of FFHR-2.