ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
I. Cristescu, I. R. Cristescu, L. Dörr, M. Glugla, D. Murdoch
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 667-671
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1565
Articles are hosted by Taylor and Francis Online.
One of the main concerns related to licensing of ITER is the amount of potentially tritium release into the environment and the qualification of the barriers against tritium release. The final barrier of tritium release from fuel cycle is the Water Detritiation System (WDS) which will be operated in combination with the Isotope Separation System (ISS). To investigate the performances of various components of these systems, an experimental facility based on Combined Electrolysis Catalytic Exchange (CECE) process with a Cryogenic Distillation (CD) process was built at Tritium Laboratory Karlsruhe. The investigations are focused on two main issues: to quantify the separation performances of deuterium and tritium within the Liquid Phase Catalytic Exchange (LPCE) and CD processes in steady state and in dynamic mode of operation and to develop an integrated control system to be used in ITER ISS, in order to minimize the tritium inventory and to reduce at maximum extent the tritium releases. At TLK the two systems, CECE and CD have been commissioned and the experimental program and preliminary functionality tests of the main components are presented.