ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Ioana R. Cristescu, I. Cristescu, Ch. Day, M. Glugla, D. Murdoch
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 659-666
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1564
Articles are hosted by Taylor and Francis Online.
During plasma operation of ITER in the DT phase, tritium will be distributed in the different subsystems of the fuel cycle; tritium inventories within the systems are not constant, but vary as the gas moves through these systems during the burn and dwell periods. To evaluate the tritium content in each sub-system of the fuel cycle of ITER, a dynamic model for tritium inventory calculation was developed. The code reflects the design of each system in various degrees of detail; both the physical processes characteristics and in some cases the associated control systems are modeled. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle subsystems. As ITER will function in pulses, the main characteristics that influence both the maximum value of tritium inventories in the systems and the rapid tritium recovery from the fuel cycle as necessary for refueling are discussed. Eventually the inventories in the Isotope Separation System (as the system with the highest tritium inventory) for short and long pulses and their dependence on the packing molar inventory are presented.