ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Ioana R. Cristescu, I. Cristescu, Ch. Day, M. Glugla, D. Murdoch
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 659-666
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1564
Articles are hosted by Taylor and Francis Online.
During plasma operation of ITER in the DT phase, tritium will be distributed in the different subsystems of the fuel cycle; tritium inventories within the systems are not constant, but vary as the gas moves through these systems during the burn and dwell periods. To evaluate the tritium content in each sub-system of the fuel cycle of ITER, a dynamic model for tritium inventory calculation was developed. The code reflects the design of each system in various degrees of detail; both the physical processes characteristics and in some cases the associated control systems are modeled. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle subsystems. As ITER will function in pulses, the main characteristics that influence both the maximum value of tritium inventories in the systems and the rapid tritium recovery from the fuel cycle as necessary for refueling are discussed. Eventually the inventories in the Isotope Separation System (as the system with the highest tritium inventory) for short and long pulses and their dependence on the packing molar inventory are presented.