ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yuji Hatano, Andrei Busnyuk, Alexander Livshits, Yukio Nakamura, Masao Matsuyama
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 613-617
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1556
Articles are hosted by Taylor and Francis Online.
In order to understand the capability of vanadium panels and membranes for fuel particle pumping at relatively low temperatures, absorption of neutral hydrogen atoms by vanadium sheet was examined at/below 350 °C under wide variety of experimental conditions. A niobium sheet kept at high temperature (420 °C) was used as a reference specimen. Sufficiently high absorption rates were obtained even at around room temperature in the range of incident fluxes from 1017 to 1021 m-2s-1. No noticeable reduction in absorption rates was observed up to the H retention level of 0.1 at%. The influence of CO and water vapor was negligibly small up to an exposure of 1023 m-2. Significant reduction in the absorption rate was observed only when an oxide film was formed on the surface by exposure to O2 to 1020 m-2 and to H2O over 1023 m-2 at room temperature.