ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
L. Crosatti, D. L. Sadowski, J. B. Weathers, S. I. Abdel-Khalik, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 531-538
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1543
Articles are hosted by Taylor and Francis Online.
As a part of the ARIES-CS compact stellarator power plant study, a modular, helium-cooled, T-tube divertor design that can accommodate a peak heat load of 10 MW/m2 has been proposed. Detailed analyses have been performed using the FLUENT[registered] CFD software package to evaluate the thermal performance at the nominal design and operating conditions. Extremely high heat transfer coefficients (>40 kW/(m2-K)) have been predicted. An experimental investigation has been undertaken to validate the results of the numerical simulations. A test module which closely simulates the geometry of the proposed He-cooled T-tube divertor has been tested using air as the coolant while maintaining the same non-dimensional parameter ranges as the He-cooled T-tube divertor design. Axial and azimuthal variations of the local heat transfer coefficient have been measured over a wide range of operating conditions. The experimental data closely match the model predictions. The results of this investigation show that the model can be used with confidence in future design analyses of the T-tube divertor, as well as similar types of gas-cooled high heat flux components.