ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. Crosatti, D. L. Sadowski, J. B. Weathers, S. I. Abdel-Khalik, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 531-538
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1543
Articles are hosted by Taylor and Francis Online.
As a part of the ARIES-CS compact stellarator power plant study, a modular, helium-cooled, T-tube divertor design that can accommodate a peak heat load of 10 MW/m2 has been proposed. Detailed analyses have been performed using the FLUENT[registered] CFD software package to evaluate the thermal performance at the nominal design and operating conditions. Extremely high heat transfer coefficients (>40 kW/(m2-K)) have been predicted. An experimental investigation has been undertaken to validate the results of the numerical simulations. A test module which closely simulates the geometry of the proposed He-cooled T-tube divertor has been tested using air as the coolant while maintaining the same non-dimensional parameter ranges as the He-cooled T-tube divertor design. Axial and azimuthal variations of the local heat transfer coefficient have been measured over a wide range of operating conditions. The experimental data closely match the model predictions. The results of this investigation show that the model can be used with confidence in future design analyses of the T-tube divertor, as well as similar types of gas-cooled high heat flux components.