ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Sal B. Rodriguez, Jason Cook
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 499-505
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1538
Articles are hosted by Taylor and Francis Online.
The Z-IFE (inertial fusion energy) plant is a unique, inertial confined, fusion energy concept in which high yield targets will be ignited to fusion, yielding brief energy bursts in the 3 to 20-gigajoule range. The fusion reaction yields an energetic burst that consists principally of neutrons, X rays, and charged particles. The X rays rapidly attenuate in matter, causing the material to expand rapidly, thus generating a strong shock wave. This shock wave must be mitigated if the Z-IFE chamber is to last for a period of 30 to 50 years.ALEGRA simulations were conducted for a hypothetical Z-IFE chamber filled with argon gas and ionized by an X ray source. The calculations employed a set of sophisticated models, including Saha ionization, XSN and CDF opacities, bremsstrahlung radiation, linearized diffusion of X ray photons for a blackbody, fully-coupled magnetohydrodynamic models, electron thermal conduction, Spitzer thermal conductivity with cold material interpolation, and Mie-Gruneisen EOS.In order to obtain confidence in the results, a laser experiment from UCSD was simulated. In the experiment, laser photons were used to ionize argon gas. The simulations showed that ALEGRA quite successfully calculated the measured temperature, level of ionization, and spatial evolution of the argon plasma.