ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
P. M. Burns, M. Myers, J. D. Sethian, M. F. Wolford, J. L. Giuliani, S. P. Obenschain, R. H. Lehmberg, S. Searles, M. Friedman, F. Hegeler, R. Jaynes, R. V. Smilgys
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 445-453
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1528
Articles are hosted by Taylor and Francis Online.
The Electra laser system is currently being developed at the Naval Research Laboratory to serve as a test bed for laser driver technologies needed for an inertial fusion energy power plant. The main amplifier has produced 730 J of laser light operating in an oscillator mode. These results as well as advancement of the laser physics, electron beam deposition, and the pulse power technologies give us projections of >7% wall plug efficiency for an IFE system. The Electra main amplifier in oscillator configuration has run continuously at 1 Hz, 2.5 Hz, and 5 Hz for multi-thousand shot runs.This paper will discuss recent results of the Electra program at the Naval Research Laboratory including integrating the Electra main amplifier into a complete laser amplifier system. Issues addressed will include development paths for the cathode, window coating, and foil longevity to attain the durability required for a fusion power plant.