ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. M. Burns, M. Myers, J. D. Sethian, M. F. Wolford, J. L. Giuliani, S. P. Obenschain, R. H. Lehmberg, S. Searles, M. Friedman, F. Hegeler, R. Jaynes, R. V. Smilgys
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 445-453
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1528
Articles are hosted by Taylor and Francis Online.
The Electra laser system is currently being developed at the Naval Research Laboratory to serve as a test bed for laser driver technologies needed for an inertial fusion energy power plant. The main amplifier has produced 730 J of laser light operating in an oscillator mode. These results as well as advancement of the laser physics, electron beam deposition, and the pulse power technologies give us projections of >7% wall plug efficiency for an IFE system. The Electra main amplifier in oscillator configuration has run continuously at 1 Hz, 2.5 Hz, and 5 Hz for multi-thousand shot runs.This paper will discuss recent results of the Electra program at the Naval Research Laboratory including integrating the Electra main amplifier into a complete laser amplifier system. Issues addressed will include development paths for the cathode, window coating, and foil longevity to attain the durability required for a fusion power plant.