ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. T. Scoville
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 398-403
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1520
Articles are hosted by Taylor and Francis Online.
Until the recent experimental campaign in 2006, all the neutral beam systems on the DIII-D tokamak injected power with the momentum in the same direction as the usual plasma current ("co-injection"). A major modification made during the April 2005-March 2006 shutdown period rotated one of the two-source beamlines to allow injecting power with the momentum opposite that of the plasma current ("counter-injection"). This modification provides the capability of injecting up to 10 MW of neutral beam power with zero net momentum input to the plasma. Decoupling the injected momentum and power opens a previously inaccessible parameter space for experiments that study the effect of rotation on various plasma instabilities, transport, and operational scenarios.Rotating the 5 MW neutral beamline presented significant technical challenges. The beamline and several major subsystems required extensive dismantling and rebuilding, and a careful alignment of the ion sources was required to document the new injection paths. We present a summary of the tasks required for the beamline rotation, describe major technical issues addressed, and discuss the advantages of the new configuration.