ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Nobuyuki Hosogane, JT-60SA Design Team, Japan-Europe Satellite Tokamak Working Group
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 375-382
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1516
Articles are hosted by Taylor and Francis Online.
The JT-60SA (Super Advanced) project is a joint project of the ITER Satellite Tokamak program and the National Centralized Tokamak program in Japan with missions of supporting ITER, complementing ITER and exploring advanced issues toward DEMO. JT-60SA is a tokamak with superconducting coils, equipped with a poloidal field coil system with wide plasma shape controllability, upper and lower divertors with different shapes, NBI and ECRF with heating power 41 MW and various heating methods, in-vessel coils for suppressing MHD instabilities. With these functions, possibilities of producing ELMy H-mode with improved confinement, full non-inductive current drive of high beta plasmas (N=3.7 at IP=3.5 MA, N =4.4 at IP=2.4 MA) and break-even class plasmas necessary for accomplishing the mission have been confirmed. The engineering design of JT-60SA is being done taking large annual neutron production into account. Double skin walls filled with borated water or boron doped concrete are employed for the vacuum vessel and cryostat, respectively, for neutron shield. Divertors structures and first walls are being designed so as to be changed with remote handling systems in the high radiation circumference.