ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Nobuyuki Hosogane, JT-60SA Design Team, Japan-Europe Satellite Tokamak Working Group
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 375-382
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1516
Articles are hosted by Taylor and Francis Online.
The JT-60SA (Super Advanced) project is a joint project of the ITER Satellite Tokamak program and the National Centralized Tokamak program in Japan with missions of supporting ITER, complementing ITER and exploring advanced issues toward DEMO. JT-60SA is a tokamak with superconducting coils, equipped with a poloidal field coil system with wide plasma shape controllability, upper and lower divertors with different shapes, NBI and ECRF with heating power 41 MW and various heating methods, in-vessel coils for suppressing MHD instabilities. With these functions, possibilities of producing ELMy H-mode with improved confinement, full non-inductive current drive of high beta plasmas (N=3.7 at IP=3.5 MA, N =4.4 at IP=2.4 MA) and break-even class plasmas necessary for accomplishing the mission have been confirmed. The engineering design of JT-60SA is being done taking large annual neutron production into account. Double skin walls filled with borated water or boron doped concrete are employed for the vacuum vessel and cryostat, respectively, for neutron shield. Divertors structures and first walls are being designed so as to be changed with remote handling systems in the high radiation circumference.