ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Y. S. Bae, Y. S. Na, Y. K. Oh, M. Kwon, J. S. Bak, G. S. Lee, J. H. Jeong, S. I. Park, M. H. Cho, W. Namkung, R. A. Ellis, H. Park, K. Sakamoto, K. Takahashi, T. Yamamoto
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 321-333
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1510
Articles are hosted by Taylor and Francis Online.
An 84-GHz, 500-kW electron cyclotron (EC) heating (ECH) system is under installation for ECH-assisted start-up in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. An 84-GHz, 500-kW gyrotron, and 1.5-MVA power supply system have been installed at KSTAR, and the initial test of the gyrotron has been carried out with a short-pulse condition of 20 s and maximum beam parameters of 80 kV and 25 A that generate an output radio-frequency (rf) power of 500 kW. The planned 2-s-long operation with 500-kW rf output power is beginning with a long-pulse test of the gyrotron power supply. The launcher system was fabricated in collaboration with Princeton Plasma Physics Laboratory. It will inject 500-kW rf power into the KSTAR plasma with a highly flexible steering mirror system, allowing toroidal and poloidal beam deposition scans. KSTAR will employ 170-GHz EC current drive (CD) in ITER-relevant experiments such as the suppression of the neoclassical tearing modes and the creation of an electron internal transport barrier. The Japan Atomic Energy Agency will provide a 170-GHz, 1-MW gyrotron on loan in 2008 in accordance with a Korea-Japan fusion collaboration agreement, and it will be used for the 170-GHz, 1-MW ECCD system in 2010. This paper describes the current status of the installation and initial conditioning tests of the 84-GHz gyrotron system as well as the development plan of the 170-GHz ECH and CD system. Also, this paper discusses the CD efficiency and the steering range of the second-harmonic X-mode injection at 170 GHz and 5 MW from an equatorial launcher.