ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Y. Yoshimura, S. Ferrando-Margalet, M. Isobe, C. Suzuki, A. Shimizu, T. Akiyama, C. Takahashi, K. Nagaoka, S. Nishimura, T. Minami, K. Matsuoka, S. Okamura, CHS Group, H. Igami, S. Kubo, T. Shimozuma, T. Notake, T. Mutoh, K. Nagasaki
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 216-220
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1500
Articles are hosted by Taylor and Francis Online.
Evident increases in the plasma stored energy by applying 54.5-GHz electron cyclotron (EC) waves have been observed in overdense plasmas sustained by neutral beam injection in the Compact Helical System. The heating effect was seen even for a high density of 8 × 1019 m-3, that is, more than twice the cutoff density of 3.8 × 1019 m-3 of the 54.5-GHz waves. The 54.5-GHz EC wave beams were obliquely injected into high-density plasmas. Dependences of the heating effect on the experimental conditions such as the polarization and the injection power of the EC waves, and the magnetic field were investigated. A higher left-hand circular polarization fraction and higher injection power resulted in a longer plasma duration time and a higher increment of the plasma stored energy. Variation of the electron temperature profile in the magnetic field scan experiment shows the power deposition in the plasma core region inside the plasma cutoff layer. These experimental results show that the main cause for this heating mechanism is electron Bernstein wave heating via an Ordinary-eXtraordinary-Bernstein (O-X-B) mode conversion process.