ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
R. R. Paguio, M. Takagi, M. Thi, J. F. Hund, A. Nikroo, S. Paguio, R. Luo, A. L. Greenwood, O. Acenas, S. Chowdhury
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 682-687
Technical Paper | doi.org/10.13182/FST51-682
Articles are hosted by Taylor and Francis Online.
Previously we have developed a production process for both standard density (100 mg/cc) and high-density (180-200 mg/cc) resorcinol formaldehyde (RF) foam shells with a triple orifice droplet generator. These foam shells are needed for direct drive inertial confinement laser fusion experiments on the OMEGA laser facility at the University of Rochester. Although this process has been developed into production mode, the yield of high density RF (HDRF) and standard density (SDRF) shells with acceptable wall uniformity has been poor. This yield depends on the type of RF shell that is being fabricated. For HDRF this yield is ~5% while for the SDRF shells the yield is ~30%. We have made improvements in the yield of these shells that meet the wall uniformity specification by modifying the composition of the outer oil solution (O2) in the microencapsulation emulsion. This improvement was achieved by a small addition (0.60 wt.%) of a styrene-butadiene-styrene (SBS) block copolymer into the outer oil (O2) solution that increased the interfacial tension of the emulsion system as well as the viscosity of the O2 solution. This modification improved the out of round and concentricity of the RF foam shells resulting in an increase in the yield of shells that meet the target wall uniformity specifications.