ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
R. R. Paguio, M. Takagi, M. Thi, J. F. Hund, A. Nikroo, S. Paguio, R. Luo, A. L. Greenwood, O. Acenas, S. Chowdhury
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 682-687
Technical Paper | doi.org/10.13182/FST51-682
Articles are hosted by Taylor and Francis Online.
Previously we have developed a production process for both standard density (100 mg/cc) and high-density (180-200 mg/cc) resorcinol formaldehyde (RF) foam shells with a triple orifice droplet generator. These foam shells are needed for direct drive inertial confinement laser fusion experiments on the OMEGA laser facility at the University of Rochester. Although this process has been developed into production mode, the yield of high density RF (HDRF) and standard density (SDRF) shells with acceptable wall uniformity has been poor. This yield depends on the type of RF shell that is being fabricated. For HDRF this yield is ~5% while for the SDRF shells the yield is ~30%. We have made improvements in the yield of these shells that meet the wall uniformity specification by modifying the composition of the outer oil solution (O2) in the microencapsulation emulsion. This improvement was achieved by a small addition (0.60 wt.%) of a styrene-butadiene-styrene (SBS) block copolymer into the outer oil (O2) solution that increased the interfacial tension of the emulsion system as well as the viscosity of the O2 solution. This modification improved the out of round and concentricity of the RF foam shells resulting in an increase in the yield of shells that meet the target wall uniformity specifications.