ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
C. A. Frederick, C. A. Back, A. Nikroo, M. Takagi
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 647-650
Technical Paper | doi.org/10.13182/FST07-A1458
Articles are hosted by Taylor and Francis Online.
Target design for the National Ignition Facility requires either a glass or polyimide (PI) fill tube. To study the hydrodynamic effects that are introduced by a fill tube during capsule implosion, fill tube targets were fabricated for experiments at the Z-Pinch facility. Three and four fill tube targets were designed and fabricated to maximize data during each experiment. Targets were made with PI and glass fill tubes on the same capsule to study the shadowing differences between glass and plastic fill tubes. Four tube targets were fabricated with diameters ranging from 10-45 m to study the effect diameter has on implosion characteristics. Capsules were coated with a germanium-doped layer of glow discharge polymer. Blind holes were drilled in the capsules using an excimer laser. Fill tubes were fabricated using modified capillary pullers and assembly was done on a specially designed assembly station designed for fill tube fabrication. Targets were characterized by optical microscopy and by micron resolution x-ray tomography.