ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. P. Mauldin, E. Giraldez, J. S. Jaquez, C. H. Shearer, Jr., R. B. Stephens, D. M. Woodhouse
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 626-630
Technical Paper | doi.org/10.13182/FST07-A1454
Articles are hosted by Taylor and Francis Online.
The fast ignition concept is a proposed method to reach fusion by two separate processes. The task of the first process is the compression of fuel and the second is the ignition of the compressed fuel by a rapid and directed energy deposition. One delivery method of this energy can be in the form of focused proton beams and this type of fast ignition target will be discussed. The target designs consisted of gold and plastic cones with a curved proton-generating surface (aluminum) within the cone and very close to the tip. The challenges of the given target specifications led to a new cone design consisting of a cone base and cone tip made in two pieces with the proton generating surface sandwiched between. The fabrication of these targets consisted of several steps and processes that included making PAMS shell mandrels, sputter coating deposition, electroplating, precision machining, chemical etching, and target assembly.