ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. P. Mauldin, E. Giraldez, J. S. Jaquez, C. H. Shearer, Jr., R. B. Stephens, D. M. Woodhouse
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 626-630
Technical Paper | doi.org/10.13182/FST07-A1454
Articles are hosted by Taylor and Francis Online.
The fast ignition concept is a proposed method to reach fusion by two separate processes. The task of the first process is the compression of fuel and the second is the ignition of the compressed fuel by a rapid and directed energy deposition. One delivery method of this energy can be in the form of focused proton beams and this type of fast ignition target will be discussed. The target designs consisted of gold and plastic cones with a curved proton-generating surface (aluminum) within the cone and very close to the tip. The challenges of the given target specifications led to a new cone design consisting of a cone base and cone tip made in two pieces with the proton generating surface sandwiched between. The fabrication of these targets consisted of several steps and processes that included making PAMS shell mandrels, sputter coating deposition, electroplating, precision machining, chemical etching, and target assembly.