ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, A. Nikroo
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 576-580
Technical Paper | doi.org/10.13182/FST51-756
Articles are hosted by Taylor and Francis Online.
We have successfully fabricated 2 mm beryllium targets pressurized with a gas mixture of ~20 atm deuterium and ~0.1 atm argon. These targets have been used for indirect drive Inertial Confinement Fusion (ICF) experiments on the Z-pinch machine at Sandia National Laboratories leading to record neutron yields of ~3.5 × 1011 [J.E. Bailey, et al., "Be Capsule Implosions Driven by Dynamic Hohlraum X-rays," Bull. Am. Phys. Soc. 51, 107 (2006)]. This paper will discuss the process of fabricating such targets from intact shells (Be sputter coated CH mandrels). These processes include laser drilling a ~6 m diameter fill hole in a shell, removing the CH mandrel by pyrolysis, pressurizing the target with a deuterium/argon gas mixture and sealing the fill hole using UV glue while under pressure. The targets were characterized for gas pressure and deuterium gas permeation half-life by utilizing techniques including mass spectrometry, x-ray fluorescence spectroscopy and controlled shell bursting.