ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
K. P. Youngblood, K. A. Moreno, A. Nikroo, H. Huang, Y. T. Lee, S. A. Letts, C. S. Alford, S. R. Buckley
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 572-575
Technical Paper | doi.org/10.13182/FST51-752
Articles are hosted by Taylor and Francis Online.
Ablative targets for the National Ignition Campaign (NIC) have been fabricated by sputter coating spherical mandrels made of glow discharge polymer (GDP) with graded copper doped beryllium (Be) layers. The inner mandrel must be completely removed to meet specific ignition design requirements. The process of removing the mandrel requires elevated temperature in the presence of oxygen. However, elevating the temperature in air also oxidizes the Be and can cause blistering on the inner surface of the Be shell. This paper will discuss a refined technique, which removes the GDP mandrel without compromising the integrity of the inner Be surface. The oxygen gradient that develops during the mandrel removal and the impact of its presence will also be discussed.