ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
A. Litnovsky, M. Matveeva, D. L. Rudakov, C. P. Chrobak, S. L. Allen, A. W. Leonard, P. L. Taylor, C. P. C. Wong, B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz, P. C. Stangeby, U. Breuer, V. Philipps, S. Möller
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 97-103
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14119
Articles are hosted by Taylor and Francis Online.
Thermo-oxidation is controlled exposure in an oxygen-containing atmosphere at elevated temperature and is being considered as a technique for the de-tritiation of carbon-based codeposits in ITER. In addition, unplanned oxidation may also occur during accidental air ingress. The impact of thermo-oxidation on ITER diagnostic mirrors causes concerns. A dedicated study was performed in DIII-D, where molybdenum and copper mirrors were installed in the main chamber, in the divertor, and at a location remote from the plasma and exposed for [approximately]2 hours to a mixture containing 80% helium and 20% oxygen at a total pressure of 1.27 kPa. Mirrors in the main chamber and in the divertor were exposed at 350°C to 360°C whereas the temperature of mirrors in the remote area was [approximately]160°C.Reflectivity of all mirrors was degraded after thermo-oxidation showing a decrease in the UV range from 60% to 10% for molybdenum mirrors and a 90% drop for copper mirrors at the wavelength 250 nm. The reflectivity of mirrors exposed at lower temperature was less degraded. Surface analyses revealed formation of oxides on all mirrors.In ITER, shutters planned for mirror protection are ineffective against thermo-oxidation. Nevertheless, in-situ cleaning systems planned for ITER mirrors may efficiently remove oxide layers.