ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
A. Litnovsky, M. Matveeva, D. L. Rudakov, C. P. Chrobak, S. L. Allen, A. W. Leonard, P. L. Taylor, C. P. C. Wong, B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz, P. C. Stangeby, U. Breuer, V. Philipps, S. Möller
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 97-103
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14119
Articles are hosted by Taylor and Francis Online.
Thermo-oxidation is controlled exposure in an oxygen-containing atmosphere at elevated temperature and is being considered as a technique for the de-tritiation of carbon-based codeposits in ITER. In addition, unplanned oxidation may also occur during accidental air ingress. The impact of thermo-oxidation on ITER diagnostic mirrors causes concerns. A dedicated study was performed in DIII-D, where molybdenum and copper mirrors were installed in the main chamber, in the divertor, and at a location remote from the plasma and exposed for [approximately]2 hours to a mixture containing 80% helium and 20% oxygen at a total pressure of 1.27 kPa. Mirrors in the main chamber and in the divertor were exposed at 350°C to 360°C whereas the temperature of mirrors in the remote area was [approximately]160°C.Reflectivity of all mirrors was degraded after thermo-oxidation showing a decrease in the UV range from 60% to 10% for molybdenum mirrors and a 90% drop for copper mirrors at the wavelength 250 nm. The reflectivity of mirrors exposed at lower temperature was less degraded. Surface analyses revealed formation of oxides on all mirrors.In ITER, shutters planned for mirror protection are ineffective against thermo-oxidation. Nevertheless, in-situ cleaning systems planned for ITER mirrors may efficiently remove oxide layers.