ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. R. Hodgson
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 89-96
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14118
Articles are hosted by Taylor and Francis Online.
Present ITER diagnostics are designed to provide machine protection, basic and advanced control, fusion performance evaluation, and an extensive measurement capability for furthering plasma physics understanding. However, in the longer term beyond ITER, diagnostic components and associated materials must survive extended periods in the more hostile environment of not only DEMO, but also fusion power plants. In addition to the need to minimize penetrations in the first wall, undoubtedly due to their known high sensitivity to radiation, the use of insulators, and hence diagnostics, will be further severely restricted to those essential to operation, safety, and maintenance related to plasma control and machine protection. The problems we will have to address are related to long-term fluence or dose-related degradation of the required properties due to aggregation and segregation of radiation-induced defects and impurities present in the original materials, as well as H, He, and other transmutation elements. To resolve these challenges, long-term research activities must increase. For the diagnostics (and other systems), in situ irradiation testing is essential. In the near- to mid-term future, available experimental fission reactors will be invaluable, where even basic problems such as irradiation in vacuum and temperature control must be overcome.