ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
E. R. Hodgson
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 89-96
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14118
Articles are hosted by Taylor and Francis Online.
Present ITER diagnostics are designed to provide machine protection, basic and advanced control, fusion performance evaluation, and an extensive measurement capability for furthering plasma physics understanding. However, in the longer term beyond ITER, diagnostic components and associated materials must survive extended periods in the more hostile environment of not only DEMO, but also fusion power plants. In addition to the need to minimize penetrations in the first wall, undoubtedly due to their known high sensitivity to radiation, the use of insulators, and hence diagnostics, will be further severely restricted to those essential to operation, safety, and maintenance related to plasma control and machine protection. The problems we will have to address are related to long-term fluence or dose-related degradation of the required properties due to aggregation and segregation of radiation-induced defects and impurities present in the original materials, as well as H, He, and other transmutation elements. To resolve these challenges, long-term research activities must increase. For the diagnostics (and other systems), in situ irradiation testing is essential. In the near- to mid-term future, available experimental fission reactors will be invaluable, where even basic problems such as irradiation in vacuum and temperature control must be overcome.