ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Ivan Di Piazza, Leo Bühler
Fusion Science and Technology | Volume 38 | Number 2 | September 2000 | Pages 180-189
Technical Paper | doi.org/10.13182/FST00-A141
Articles are hosted by Taylor and Francis Online.
The buoyancy-driven magnetoconvection in the cross section of an infinitely long vertical square duct is investigated numerically using the CFX code package. The implementation of a magnetohydrodynamic (MHD) problem in CFX is discussed, with particular reference to the Lorentz forces and the electric potential boundary conditions for arbitrary electrical conductivity of the walls. The method proposed is general and applies to arbitrary geometries with an arbitrary orientation of the magnetic field. Results for fully developed flow under various thermal boundary conditions are compared with asymptotic analytical solutions. The comparison shows that the asymptotic analysis is confirmed for highly conducting walls as high velocity jets occur at the side walls. For weakly conducting walls, the side layers become more conducting than the side walls, and strong electric currents flow within these layers parallel to the magnetic field. As a consequence, the velocity jets are suppressed, and the core solution is only corrected by the viscous forces near the wall. The implementation of MHD in CFX is achieved.