ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. C. England, D. K. Lee, S. G. Lee, M. Kwon, S. W. Yoon, Hanbit Team (19P50)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 346-348
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1397
Articles are hosted by Taylor and Francis Online.
The Hanbit device is a magnetic mirror machine which has a central cell, one anchor cell and one plug cell. The Hanbit device has been involved in a series of experiments on stabilization of the MHD flute type mode including stability experiments with a divertor. We have undertaken investigations to see if the Kinetic Stabilizer (KS) of R. F. Post can stabilize the MHD instability. According to the theory, by locating a stabilizing plasma pressure on the field lines at a region with a strong second derivative and large radius in the expanding field region outside the mirrors, the main plasma in the mirror central cell in regions with unfavorable field line curvature can be stabilized. The Hanbit KS uses microwave produced plasmas on field lines in the cusp tank region. Two coils on the cusp tank are configured to produce expanding field lines with a large positive radius of curvature. A 5-kW 2.45 GHz magnetron is used to produce the stabilizing electron cyclotron resonant heated (ECRH) plasma pressure in this region. Details of the experimental arrangement and stabilizing plasma parameters were previously reported. For normally terminating plasmas, a reduction in the instability duration has been observed and the range of density where the instability occurs has decreased. However, for higher density plasmas which disrupt due to an m=-1 instability, a prevalent m=+1 instability is removed while the duration of the m=-1 instability is increased.