ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
L. A. El-Guebaly, A. Jaber, S. Malang, ARIES-ACT Team
Fusion Science and Technology | Volume 61 | Number 4 | May 2012 | Pages 321-331
Technical Paper | doi.org/10.13182/FST11-451
Articles are hosted by Taylor and Francis Online.
There is a strong indication that the dual-cooled LiPb blanket is the preferred concept for many fusion power plants being designed around the world. The ability of the blanket to provide tritium self-sufficiency is among the important issues that we investigated in detail for ARIES-ACT to pinpoint the design elements that degrade the breeding the most, using state-of-the-art neutronics codes. A novel stepwise approach was developed to identify the exact cause of the degradation in the tritium breeding ratio (TBR), initially 1.8 for an ideal system, reaching 1.05 for a practical design. More broadly, this paper gives many insights into the impact that internal components of the blanket as well as essential parts of a tokamak can have on the TBR and the more damaging or enhancing conditions or changes to the breeding. To overcome the challenges of dealing with all tritium-related uncertainties in several subsystems, we suggest adjusting the Li enrichment online during operation to mitigate concerns about the danger of placing the plant at risk due to tritium shortage as well as the problem of handling and safeguarding any surplus of tritium.