ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
B. Weyssow
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 69-85
Basic and Kinetic Theory | Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST12-A13494
Articles are hosted by Taylor and Francis Online.
Kinetic theory studies the macroscopic properties of large numbers of particles, starting from their (classical) equations of motion while the thermodynamics describes the equilibrium behavior of macroscopic objects in terms of concepts such as work, heat, and entropy. The phenomenological laws of thermodynamics tell us how these quantities are constrained as a system approaches its equilibrium. At the microscopic level, we know that these systems are composed of particles (atoms, particles), whose interactions and dynamics are reasonably well understood in terms of more fundamental theories. If these microscopic descriptions are complete, we should be able to account for the macroscopic behavior, i.e. derive the laws governing the macroscopic state functions in equilibrium. Kinetic theory attempts to achieve this objective. In particular, we shall try to answer the following questions:How can we define equilibrium for a system of moving particles?Do all systems naturally evolve towards an equilibrium state?What is the time evolution of a system that is not quite in equilibrium?