ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Satoshi Fukada, Shigenori Suemori
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 441-445
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13460
Articles are hosted by Taylor and Francis Online.
A system to utilize high-temperature nuclear heat effectively is proposed here. The system comprises a High-Temperature Gas-cooled nuclear Reactor (HTGR), reaction vessels to produce H2 using the steam-reforming reaction of CH4 or the Iodine-Sulfur (I-S) process, chemical heat pumps and He gas turbines. The chemical heat pumps are operated between the two decomposition temperatures of SO3 (~900°C) and HI (~500°C) of the I-S process. The pump system transfers heat from lower temperature to higher one with repeated H2 absorption-desorption cycles, and the overall thermal conversion ratio from H2O to H2 can be enhanced. The material candidate for H2 absorption in heat pump is considered TiH2 and ZrCoH3 (or UH3) according to the two reaction temperatures. The decomposition of the metal hydrides proceeds at their respective plateau pressures that are a function of temperature regardless of the H content in metals. Variations of the temperature and the equilibrium H2 pressure with repetitions of the heat-pump cycle are shown in the present paper comparatively. In addition, proton-conducting fuel cell system supplied with CH4 is incorporated in the high-temperature utilization system.