ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
Michael Rieth, Jens Reister, Bernhard Dafferner, Siegfried Baumgärtner
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 381-384
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-1T3
Articles are hosted by Taylor and Francis Online.
Many divertor design studies for future fusion reactors rely on helium gas cooling. In these concepts, pressurized tubes or channels had to be operated at maximum temperatures between 1000 °C and 1300 °C while the lowest operating temperature is preset by the coolant inlet or by specific start-up and maintenance conditions. At such extreme temperature regimes, the only reduced activation material that would provide enough strength, paired with the necessary heat conductivity, is tungsten. Therefore, various tungsten materials and alloys are often publicized as candidate material for structural divertor applications.However, there are also clear limitations. Therefore, an intensive study on the influence of microstructure and chemical composition on the fracture behavior of industrially produced tungsten materials has been perfomed. This paper reviews the results and some other relevant properties of tungsten materials with respect to possible applications for structural divertor parts. Drawbacks and possible alternatives are discussed.