ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
H. E. Khalifa, C. P. Deck, K. C. Chen, C. A. Back
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 375-380
Materials | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13448
Articles are hosted by Taylor and Francis Online.
Chemical vapor infiltrated (CVI) silicon carbide fiber reinforced-silicon carbide matrix (SiC-SiC) composite is a relatively new material and has come under increased scrutiny as an attractive material for nuclear applications. In these materials, the interplay between fiber and matrix leads to enhanced fracture toughness. However, due to the inherent directionality of the fibers, under-standing the mechanical and thermal performance is complex and requires careful characterization. At General Atomics, a laboratory has been established to develop these materials for a range of applications, in particular for the Energy Multiplier Module (EM2), which is a gas-cooled fast reactor.In this paper, the program of work that is being undertaken to fabricate and characterize SiC matrix com-posites is discussed. For mechanical testing, specialized fixtures have been developed to hold the thin ceramic composite specimens. For thermal testing, the purge gas species and flow rate have been identified as important parameters. Initial results on planar samples have been performed on SiC-SiC samples and hot pressed SiC samples.