ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
D. L. Youchison, J. M. Garde
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 322-328
Modeling and Simulations | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST61-1T-322
Articles are hosted by Taylor and Francis Online.
Refractory metallic foams can increase heat transfer efficiency in gas-to-gas and liquid metal-to-gas heat exchangers by providing an extended surface area for better convection, i.e. conduction into the foam ligaments providing a “fin-effect,” and by disruption of the thermal boundary layer near the hot wall and ligaments by turbulence promotion.We present the relative contributions of the heat transfer mechanisms stated above, and show how the design of a gas regenerator or liquid metal-to-gas heat exchanger can be optimized for use in high-temperature Brayton cycle applications for nuclear power generation or hydrogen production. Our results include temperature and thermal stress distributions for several densities of Nb1Zr, Mo and W foams compared to Cu. For instance, the simulations reveal that unconnected W foam can increase the convective heat transfer coefficient by almost a factor of two compared to an open rectangular channel and a factor of three if the foam ligaments are thermally connected to the sidewalls under the same flow conditions.The effect of ligament thermal conductivity is also highlighted by comparing the performance of W foams to identical Cu foams and the use of SiC foams in thermal barrier applications. The studies indicate that thermal stresses increase with foam density, but are not clearly correlated with pore cell size.For thermal management applications, the presence of the connected foam minimizes the thermal stresses in the wall, by concentrating them in the ligaments where the temperature gradients are higher. In addition, the large number of small connected ligaments provides a modest degree of compliance for thermal expansion of the hotter walls in relation to the colder portions of the heat exchanger. These CFD studies have led to design strategies for creating compact, high-temperature, high-pressure heat exchangers that are easily fabricated and perform better than plate-type heat exchangers.