ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
V. Romanello et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 262-267
Fusion-Fission Hybrids and Transmutation | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13430
Articles are hosted by Taylor and Francis Online.
The performances of three different types of innovative transmutation systems have been investigated in order to assess in a comparative way their potential to manage nuclear waste arising in a geographical region, where different countries have different policies with respect to nuclear energy development, but share the objective of a common optimized waste management strategy in order to minimize the waste masses sent to a geological repository. The three systems are 1) a critical low conversion ratio fast reactor (LCFR); 2) an accelerator driven system (ADS) and 3) a hybrid fission-fusion system (FFH). In order to simplify the comparison, the three systems have been loaded with comparable fuels, in particular with the same Pu to Minor Actinides (MA) ratio. A waste management scenario study has been performed: the results show that, apart from the technological readiness of each single option, the performances, in terms e.g. of time needed to eliminate specific spent fuel inventories or in terms of reduction of decay heat and radiotoxicity in a deep geological repository, are rather comparable.