ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
B. Vezzoni et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 155-160
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13413
Articles are hosted by Taylor and Francis Online.
Traditionally the analysis of the evolution of severe core disruptive accidents (CDA) is broken down into different phases. This is mainly done for a better focussing on the key phenomena of the accident phase and also allows the application of specific codes for the analysis. In the current paper we mainly deal with the initiating phase and the transition phase of an accident as the ULOF (unprotected loss of flow). The key phenomenon of the initiating phase is the start of boiling and the development of voiding; key phenomena of the transition phase are the progression of core melting and the occurence of recriticalities by fuel compaction. The first level of optimizing safety is oriented to the initiating phase by reducing the positive void worth in order to avoid that a ULOF accident would enter a severe development.If accident prevention is not achieved the transition phase, characterized by a progressive core degradation leading to the occurrence of recriticalities, can be mitigated by dedicated features that enhance and guarantee a sufficient and timely fuel discharge - e.g. by a controlled material relocation (CMR) - and influence and `brake'; the recriticality path.In the paper both phases are analyzed. The results presented are in agreement with the activities performed within the European Collaborative CP-ESFR project.