ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Babulal Gopalapillai et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 113-118
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13406
Articles are hosted by Taylor and Francis Online.
ITER is a joint international fusion facility which is being built in France to demonstrate the scientific and technological feasibility of fusion power. ITER will pave the way for the commercial exploitation of nuclear fusion to meet the ever increasing energy needs of mankind. Fusion power at ITER is generated using a Tokamak machine in which burning plasma inside the vacuum vessel at temperatures in excess of 150 million °C is confined by magnetic fields. The heat energy generated from the Tokamak and the auxiliary systems is removed by the Cooling Water System (CWS). The cooling water system is designed to remove the total peak heat load of about 1100 MW to the atmosphere by circulating approximately 25,000 m3 of water of diverse chemical specifications in multiple loops.The design of the cooling water systems considers occupational health and safety, nuclear safety, radiation protection, and environmental protection requirements. Minimizing environmental impact is a major factor in demonstrating the viability of fusion energy as a future energy source. This paper presents the features in the design of CWS for making it environmentally friendly.