ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
F. Bombarda, B. Coppi, F. Franza, Z. S. Hartwig, G. Ramogida, M. Zucchetti
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 95-100
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13403
Articles are hosted by Taylor and Francis Online.
Fusion creates more neutrons per energy released than fission or spallation, therefore DT fusion facilities have the potential to become the most intense sources of neutrons for material testing. An Ignitor-like device, that is a compact, high field, high density machine could be envisaged for this purpose making full use of the intense neutron flux that it can generate, without reaching ignition. The main features of this High Field Neutron Source Facility, which would have about 50% more volume than Ignitor, are illustrated and the R&D required in order to achieve relevant dpa quantities in the tested materials are discussed, in particular the adoption of superconducting magnet coils. Radiation damage evaluations have been performed by means of the ACAB code, showing the potential of high field, neutron-rich devices for fusion material testing. Few full-power months of operation are sufficient to obtain significant radiation damage values (in terms of dpa) of large size samples (~m3). The setup of a duty cycle for the device in order to obtain such operation times is discussed. The problem of radiation damage to the insulator of the Toroidal Field Coils has been explored. Two strategies for mitigating damage to the TF coil insulators have been demonstrated, and it is likely that both will need to be implemented to ensure the survival of the insulating material for the lifetime of the tokamak.