ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
John Parmentola, John Rawls
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 9-14
Plenary | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13389
Articles are hosted by Taylor and Francis Online.
Nuclear power has much to offer in addressing the nation's energy security needs in an environmentally acceptable manner. But today's fission technology cannot accomplish this without adding to the ever-increasing volume of high-level waste; these waste concerns may be the limiting factor in the use of nuclear power. Breeder reactors had been considered as a way to solve this problem; however, because of cost and proliferation concerns, breeders are increasingly unlikely to be commercialized. In an attempt to allow nuclear power to reach its full economic potential, General Atomics is developing the Energy Multiplier Module (EM2). EM2 is a gas-cooled compact fast reactor that augments its fissile fuel load with either spent fuel or depleted uranium. This provides the additional fertile material to allow the reactor to both create and burn fuel in situ. This results in a core that will last decades without fuel supplementation or shuffling. The end-of-cycle fuel can be treated in a manner that does not separate actinides, permitting reuse in subsequent generations at reduced proliferation risk. Proliferation resistance is further enhanced because no enrichment is required beyond that needed for the first generation fuel load. Waste problems are mitigated by several factors: higher burnup, fuel use in multiple generations, and conversion of existing waste to energy.