ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
E. A. Veshchev, L. Bertalot, S. Putvinski, M. Garcia-Munoz, S. W. Lisgo, C. S. Pitcher, R. A. Pitts, V. S. Udintsev, M. Walsh
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 172-184
Technical Paper by Monaco ITER Postdoctoral Fellows | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13385
Articles are hosted by Taylor and Francis Online.
A feasibility study for a fast-ion-loss detector in ITER has been carried out. Taking into account the basic requirements for measuring magnetohydrodynamic (MHD)-induced fast-ion (fusion-born alpha particles and ions from external heating systems) losses and the harsh environments expected in ITER plasmas, a solution based on a reciprocating probe installed in an equatorial port is suggested. In agreement with previous studies, Monte Carlo simulations of alpha-particle load on the first wall in MHD quiescent plasmas indicate that the main losses will be concentrated below the midplane, in the region of blanket module (BM) 15 to BM 18. Orbit tracing and thermal analysis, including plasma photonic and particle fluxes together with nuclear heating, have been performed to estimate the most suitable measurement timing and position of the reciprocating probe, enabling the detection of escaping alpha particles with pitch angles from [approximately]0 to 85 deg. This large velocity space ensures the detection of escaping alpha particles on both passing and trapped orbits, allowing the study of the interaction between alpha particles and a rich variety of MHD instabilities.