ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
E. A. Veshchev, L. Bertalot, S. Putvinski, M. Garcia-Munoz, S. W. Lisgo, C. S. Pitcher, R. A. Pitts, V. S. Udintsev, M. Walsh
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 172-184
Technical Paper by Monaco ITER Postdoctoral Fellows | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13385
Articles are hosted by Taylor and Francis Online.
A feasibility study for a fast-ion-loss detector in ITER has been carried out. Taking into account the basic requirements for measuring magnetohydrodynamic (MHD)-induced fast-ion (fusion-born alpha particles and ions from external heating systems) losses and the harsh environments expected in ITER plasmas, a solution based on a reciprocating probe installed in an equatorial port is suggested. In agreement with previous studies, Monte Carlo simulations of alpha-particle load on the first wall in MHD quiescent plasmas indicate that the main losses will be concentrated below the midplane, in the region of blanket module (BM) 15 to BM 18. Orbit tracing and thermal analysis, including plasma photonic and particle fluxes together with nuclear heating, have been performed to estimate the most suitable measurement timing and position of the reciprocating probe, enabling the detection of escaping alpha particles with pitch angles from [approximately]0 to 85 deg. This large velocity space ensures the detection of escaping alpha particles on both passing and trapped orbits, allowing the study of the interaction between alpha particles and a rich variety of MHD instabilities.