ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
A. I. Ryazanov, V. S. Koidan, B. I. Khripunov, S. T. Latushkin, V. B. Petrov, L. S. Danelyan, E. V. Semenov, V. N. Unezhev
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 107-117
Technical Paper | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13375
Articles are hosted by Taylor and Francis Online.
This paper presents a summary of scientific results obtained during the last few years in the National Research Centre "Kurchatov Institute" (NRC KI). The main aims of this research are the development of a new experimental method that can be applied for the investigation of the influence of a high level of radiation damage on the plasma erosion effects of irradiated materials (graphite materials and tungsten) at different temperatures and the investigation of hydrogen isotope accumulation in these materials relevant to fusion reactor conditions (in ITER).A high level of radiation damage in these materials (0.1 to 10 displacements per atom) was achieved by irradiating them with fast charged particles at the NRC KI cyclotron, simulating fast neutron irradiation in a fusion reactor. The plasma erosion effects in irradiated and nonirradiated materials were compared using the linear plasma simulator LENTA at NRC KI.The performed investigations have shown that the erosion factor of irradiated graphite materials is increased and the tungsten surface structure is changed due to the accumulation of radiation damage. No influence of irradiation on tungsten erosion rate was observed in these experimental tests. The accumulation of hydrogen isotopes and helium concentrations were measured in the irradiated tungsten.The performed work and the obtained results suggest a new promising experimental method for the experimental investigation of plasma effects on fusion structural materials at different irradiation temperatures and different radiation damage levels.