ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Wenqing Wu, Yongjun Wei, Jingwen Ba, Yan Shi
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 81-85
Technical Paper | doi.org/10.13182/FST12-A13340
Articles are hosted by Taylor and Francis Online.
Protium-deuterium isotope separation and tritium enrichment experiments have been carried out under the condition of a total reflux cycle using a continuous twin-bed hydrogen isotope separation technique, i.e., a twin-bed periodically counter-current flow technique. Two beds were packed with Pd and LaNi4.7Al0.3, which show positive and inverse isotope effects, respectively. The separation efficiency was studied experimentally in terms of stoichiometry between hydrogen and adsorbents, cycles, and extraction ratio. The experimental results show that a steady distribution of hydrogen isotopes along the axial direction can be obtained within an operating period of three cycles and a 10% extraction ratio at a moderate H/Pd atomic ratio. The results of a tritium enrichment experiment carried out under optimized conditions indicate that good enrichment efficiency is possible using this method to separate a three-component gas when the extraction ratio is kept small. Since the column used in this experiment is relatively short, there is great potential for this method for meeting the requirements of large-scale operations if long columns or multi-bed combined systems are employed.