ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
T. Kusakabe, K. Gotanda, H. Sakaue, M. Kimura (19R07)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 132-134
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1332
Articles are hosted by Taylor and Francis Online.
The charge-transfer cross sections of H+ ions in collisions with C3H4,C3H6,C4H10 and their isomers have been measured in the energy range of 0.2 to 4 keV. They are compared with the recommended or predicted values by Janev et al. Most of the present data, except for those of C3H4 targets, are found to decrease with increasing the collision energy. This feature indicates that vibrational excited states of the target molecular ions produced after charge transfer might have resulted in creation of near or accidental resonant reaction channels. Based on this view point, a new empirical scaling relation is derived.