ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
T. Kusakabe, K. Gotanda, H. Sakaue, M. Kimura (19R07)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 132-134
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1332
Articles are hosted by Taylor and Francis Online.
The charge-transfer cross sections of H+ ions in collisions with C3H4,C3H6,C4H10 and their isomers have been measured in the energy range of 0.2 to 4 keV. They are compared with the recommended or predicted values by Janev et al. Most of the present data, except for those of C3H4 targets, are found to decrease with increasing the collision energy. This feature indicates that vibrational excited states of the target molecular ions produced after charge transfer might have resulted in creation of near or accidental resonant reaction channels. Based on this view point, a new empirical scaling relation is derived.